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An Application of FDTD in Studying the End Effects All of the above-mentioned literature has dealt with isotropic
of Slotline and Coplanar Waveguide substrates—and the available results for anisotropic substrates are

with Anisotropic Substrates relatively few. In this paper, we analyze the slotline and CPW

discontinuities on anisotropic substrates by using the full-wave finite-

Jaideva C. Goswami and Raj Mittra difference time-domain (FDTD) method, which enables us to obtain

the characteristics of the discontinuities over a wide range of fre-

b hi he finite-diff ime-d ) guencies with a single run.
Abstract—In this paper, the finite-difference time-domain (FDTD) In the conventional approach of analyzing the discontinuities
method is applied in conjunction with the generalized pencil of function

(GPOF) technique to evaluate the reflection coefficient from shorted Problems, an FDTD code is run twice, first for a continuous line and
slotlines and coplanar waveguides (CPW) on anisotropic substrates, and then in the presence of the discontinuity, to derive the time-domain
to extract the propagation constant along the line from these data. For fields for both the incident and reflected waves. In this paper, we
each frequency, the field solutions at different locations are processed combine the generalized pencil of function (GPOF) method with the
by using the GPOF technique to exract two complex exponents that e method to compute the reflection coefficient in a single run
correspond to the forward and backward traveling waves, which provide Fi btain the field soluti he desired f band )
all the information about the reflection coefficient and the dispersion 'St We obtain the field solutions over the desired frequency band at
characteristic of the transmission line. The advantage of combining & number of equally spaced points located along the transmission line,
the GPOF technique with the FDTD method is that the reflection and subsequently use the GPOF to extract two complex exponents
coefficients can be obtained with a single run. Recognizing that there for each frequency, which adequately represent the computed fields,
is a dearth of results for the reflection coefficients of slotline and CPW- 54 to extract the forward and backward traveling waves from these
line discontinuities with anisotropic substrates, the present problem is also field data. The knowled f the incident and reflected fields. in turn
solved by using the spectral-domain method for the purpose of validation, _e ata. . e _0 edge o .e. ciae a. eflectec nelds, u, !
and the two results are found to compare quite well with each other. Yi€lds the dispersion characteristics of the line as well as the reflection
For further validation, the FDTD and GPOF solutions are derived for  coefficient due to the discontinuity.
isotropic substrates, and are compared with the published theoretical  We use the cubic spline for the purpose of exciting the transmission
and experimental results. line in the FDTD calculations. The time-frequency window product
Index Terms—CPW, FDTD method, GPOF method, SDA, slotline, of the cubic spline is very close to 0.5—the lowest possible value
transmission-line discontinuities. that corresponds to Gaussian-type pulses—and the cubic spline has
low-pass filter characteristics similar to the Gaussian. Consequently,
for all practical purposes, the cubic spline is similar to the Gaussian
) T ) _and has the additional advantage of being compact in support, which
One of the most challenging difficulties encountered in the desigi tyrn, avoids the need for truncation.
of microwave and millimeter-wave integrated circuits is to accu- Thjs paper is organized as follows. In the Section I, we discuss
rately characterize various kinds of transmission-line discontinuitigfe FDTD solutions and their processing using the GPOF technique.
Although the literature is replete with theoretical and experimentg}, yalidate the FDTD/GPOF results. we also solve the present
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Fig. 1. Short-circuited CPW.

electric and magnetic anisotropies (and our solution technique can

I T : B
accommodate these general cases), we restrict ourselves in this paper 1 L - FeTp j
to the presentation of results for electrically anisotropic substrates % / \ / :
only. For these substrates, we can represent the relative permittivity 0.8 I j‘
tensors in the form r / /\: \ j

06 |
€= I t€¢ + 2265 (1) r Cubic/ / \ \ j
. . o . . b Spline -
wherel , is the identity dyadic, transverse to the optic axis 04 | / ]

Next, we apply the FDTD method to obtain the, and H. ¥ / / \ b
fields at a number of points along the transmission line. While the 0.2 | q‘
knowledge of only one of the field components is sufficient for the k /‘/Z \k‘ 3

. . PV |
present analysis, we evaluate both these field components for the 0 o 10 20 30 20

purpose of understanding the field behavior near the discontinuity.

- Time (picoseconds)
For each geometry, the number of cells alongN..), y (N,), and

z (N.) are 55, 190, and 45, respectively. The corresponding spatial @

discretizationsA .., A,, and A, as well as the time discretization ] T

A¢ will be detailed in Section IV. The computational domain is 1 Z

truncated by placing first-order Mur absorbing boundarieg at 0 r \ Cubic Spline
andy = N,A,, and using second-order Mur boundaries along the 0.8

1 --a--QGaussian
other directions. The simulation is run for 3000 time steps. r \
The transmission lines are excited by using a cubic spline pulse 0.6 r

for the F, fields in the slot regions at the cell location 20 along the N \\

y-axis and at the air-dielectric interface. The discontinuity is located 0.4 :

aty = 170A,. In the CPW, the even mode is simulated by exciting E :

the two slots with pulses having the same amplitude and sign, whereas 02 ‘f
0

e P

Magnitude Spectra

. r:
td
A
-/
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in the case of an odd mode, the sign of one of the pulses is reversed.

;
The cubic spline(¢¢), and more precisely the cardinal cubic

30 60

0
B-spline, is defined as Frequency (GHz)
1, t€[0,1] (b)
‘ 4 — 12t 41247 — 3¢° te[1,2] , . : . . . .
60c(t) = o T ’ 2 Fig. 2. Cubic spline and Gaussian pulses in (a) time domain and (b
dolt) A 60— 2487 436, tef2y P froquency domain. P (@) ®)
64 — 48t + 12t* — 3, t €[3,4]

with its Fourier transformyc: given by The time—frequency—window product (see [16, p. 7] for the def-

|$(7(w)| _ <sin(w/2))d. 3 inition of the window width) of the cubic spline is 0.501, which
w/2 is very close to 0.5, the lowest possible value that corresponds to
For a given 3-dB frequency,, we need to scale the cubic splineGaussian-type windows. In Fig. 2, we show the cubic spline and
given in (2) by a factor ofR, where R = 4.4027649f,. For the the Gaussian pulses, along with their magnitude spectra for the 3-dB
same 3-dB frequency, the Gaussian pulse is given by frequency of 30 GHz. It is evident from Fig. 2 that the time-frequency

o T\2 characteristics of the two are quite similar; however, in contrast to
¢G(f) = ¢Xp |:— <W>

(4) the Gaussian, the cubic spline requires no truncation.
with T = 0.646/ fo. by using the GPOF algorithm [17], [18]. From a set of discrete data

The next step in our procedure is to process the field solutions
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1000 I ‘ ‘ ‘ Green’s function [20, ch. 2]. A detailed description of such a
t Without Marker (FDTD) 5.338 GHz | formulation can be found in [21], [22].
gop [ Vith Marker (GPOF) ‘ Observe that the CPW reduces to a slotline if weplet 0 in Fig. 1.
- P In the present analysis, we first separate the problem of Fig. 1(b) into
—§ Y 0 two parts by invoking the equivalence principle [23], which enables
= 600 at us to replace the slot regions by equivalent surface magnetic current,
& [ viz.
S 400 | ¢
e SRR} \j M.r)=E(r)x% reD:=D+UD" @)
200 - |/ ' Vy - .":\ ) ..:U -C where D" = {u,y, 2|z € (5,5 + 2d),y € (—oc,0],z = 0} and
T \A’ ] \ , J15.346 4 25.354 ] D™ i={x,y, 2|z € (—s,—5 — 2d),y € (—00,0], 2 = 0}. We then
0 —— —— S — obtain the magnetic-field integral equation by enforcing the boundary
-20 -15 -10 -5 0 condition
Position x =0, y (mm), z=0
200 . R ' z2x H(r) =0, r €D. 9)
£ : 4 25.354 ] s .
150 [, A s L : We assume that the slotwidth is very small compared to the operating
100 RS s 5.338., ., : u wavelength and, therefore, we consider only gheomponent of the
2 \ : - magnetic field. With the suitable basis functions for the magnetic field
g 50F satisfying the appropriate edge conditions, we arrive at the following
S E equation:
B OF a
" -850 . | A b=k vk, =0 10)
-100 i_ ::| ] I —oco J —oco
Without Marker (FDTD); With Marker (GPOF) 3 ) (k
-200 S S O S S S - A HM _ AHM 2 cos” (k.p)
-20 -15 -10 -5 0 AT ke ky) = Gy (R ky)‘]‘)(k"d){sinz(w) } -

Position x =0, y (mm), z =0

. 2 o .
Fig. 3. Comparison of the FDTD solutions for the electric field in the slot \?“th cos A(hp) ands17n ,( krp) for even an.d odd modes, respectlvely.
a slotline on sapphire substrate with their approximations using two complik (10): fy (k) and ¢..(k,) are the Fourier transforms of the basis
exponents extracted from the FDTD solutions by using the GPOF. functions representing-dependence of the magnetic current. To find
the propagation constant,. of an infinite transmission line, we
assume that thg-dependence of all the field and current distributions

{fi i =0,---, M} of a complex valued functiorf, this algorithm g given bye=7*+< . For this case, we arrive at a simple equation for
finds the complex coefficientg;, :: i = 1,--+, N} such that the determination of,., that reads
1\7 OO0
fii=fxi) = ex explyeni),  N<M (5) / ATM (key kye) i, = 0. (12)
k=1 —oo
where z; = iA, and A, is the discretization step. While the por the longitudinal variation of the magnetic current, we consider
GPOF technique is similar to the Prony’s method [19], the difference
between the two lies in the manner in which the complex poles are ) K
extracted. fo) = 5:iy) + Tsp(y) + Y cxon(y) 13)
The FDTD solutions forE,, are compared with the GPOF results k=0

with two complex exponents in Fig. 3, and the two results agréghere i > 0. Although |T|, the magnitude of the reflection coeffi-
quite well. Although the lines are lossless, the real parts.ostill  cjent should be unity for a shorted line, it turns out to be somewhat
have some small nonzero values that are numerical artifacts. T88s than one because of the nonideal nature of the terminations shown
imaginary parts ofy; yield the propagation constants, whereas thg, rig 1. The expressions for the entire domain functiens,, and
relative magnitudes of the coefficientscorrespond to the reflection e siub-domain basis functions may be found in [24], [25]. Finally,
coefficients. we use the above functions also as testing functions and apply the
Galerkin procedure to obtain a set of linear equations, whose solution

Ill. SPECTRAL-DOMAIN ANALYSIS (SDA) yields the desired results for the reflection coefficiEnt
To verify the FDTD results we re-solve the discontinuities prob-
lems shown in Fig. 1 by using the spectral-domain method, which is IV. NUMERICAL RESULTS AND DISCUSSIONS

briefly discussed below.

The time-harmonic forms of the Maxwell's equation for an All of the FDTD results in this paper have been obtained by

anisotropic medium are diven b using the decretizations\, = A, = A. = 0.0002 m, and
P 9 Y Ay = 0.365908 3 ps, except for the ones in Fig. 6, where we have

~VxE=jupp H+M (6) usedA, = A, = A. = 0.00016 m, andA; = 0.2927266 ps.
VxH=jwee E+J. ) The various integrals involved in the SDA have been evaluated by

performing the integrations along the real axis. A major observation
We can obtain the dyadic magnetic-field Green’s functionggarding the locations of the surface-wave poles is that, unlike the
gHM (r,r") from (6) and (7) in terms of the transmission-linecase of an isotropic substrate, the TE and TM poles may not alternate
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Fig. 4. Effective dielectric constants of slotine and CPW by using thEig- 6. Comparison of the FDTD/GPOF solution for the magnitude of the
FDTD/GPOF and SDA methods. reflection coefficient of a shorted CPW with the theoretical result in [11].
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in [4] for the normalized reactance of a shorted slotline.
Fig. 7. Reflection coefficient for a shorted slotline on sapphire substrate.

for anisotropic substrates. The details on the surface-wave poles and
residues may be found in [22]. 1.1 e — ————————
In Fig. 4, the FDTD/GPOF results for effective dielectric constants [, Magnitude: ; : J
for the slotline and the CPW on sapphire substfate= 9.4,¢. = 5 '
11.6) are compared with those derived by using the SDA, and are
seen to agree very well with each other. In plotting the FDTD/GPOF
solutions in Figs. 5-8, we have applied a smoothing procedu% t00.66 |
eliminate the numerical artifacts. In Figs. 5 and 6, we comparéthe
FDTD/GPOF solutions with the experimental [4] and theoretical @1]
results for the alumina substrate, = e. = 9.9). Figs. 7 and & %% | : : .
compalre the results forl the magnitude and pha.se of the r.eflection : —FDTD/GPOF] ]
coefficients of the slotline and the CPW obtained by using the g5 [ .. — S 1 120
FDTD/GPOF and the spectral-domain analyses. We note that the  + 8 SDAI 2d=2s =h =1mm .
discrepancies between the solutions become significant at higher [ : §€(=9'4' £Z=1§1.6 i
frequencies where the SDA results may not be very accurate because © — 100

) . x ° ¢ 5 10 15 20 25
of the various assumptions about the slotwidth and the basis functions Frequency (GHz)
made in the SDA. q y

Fig. 8. Reflection coefficient for a shorted CPW on sapphire substrate.
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V. CONCLUSIONS . . e .
) ) that the cubic-spline excitation is similar to the Gaussian, but has
In this paper, we have combined the FDTD method 9 aqvantage over the latter in that it requires no truncation. We

electromagnetic-field computation with the GPOF technique, whigl, e \ajidated our results by comparing them with the theoretical
extracts the complex poles from the field data, and have appllggd experimental data from other sources

this combination to analyze the short-circuit discontinuities in the
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